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Abstract. This paper proposes a new approach to measure the depen-
dence in multivariate financial data. Data in finance and insurance often
cover a long time period. Therefore, the economic factors may induce
some changes inside the dependence structure. Recently, two methods
using copulas have been proposed to analyze such changes. The first ap-
proach investigates the changes of copula’s parameters. The second one
tests the changes of copulas by determining the best copulas using mov-
ing windows. In this paper we take into account the non stationarity of
the data and analyze: (1) the changes of parameters while the copula
family keeps static; (2) the changes of copula family. We propose a series
of tests based on conditional copulas and goodness-of-fit (GOF) tests to
decide the type of change, and further give the corresponding change
analysis. We illustrate our approach with Standard & Poor 500 and Nas-
daq indices, and provide dynamic risk measures.

Keywords: Dynamic copula; Goodness-of-Fit test; Change-point; Time-
varying parameter; VaR; ES.

JEL: C52

1 Introduction

Determining the dependence between assets is an important domain
of research. It is useful for portfolio management, risk assessment,
option pricing and hedging. The correlation matrices have been a
lot considered to quantify the dependence structure between assets,
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but it is now well known that this kind of approach is only satis-
factory when we work inside a Gaussian or an Elliptical framework.
The recent work of Embrechts et al. (2001) proposing the concept of
copulas to measure dependence between financial data has opened
the routes to a very interesting research domain, which has shown
its ability to improve the domain of quantitative finance.

In the static one-period situation given by the real-valued random
variables X1, · · · , Xd, the dependence between X1, · · · , Xd is com-
pletely determined by their joint distribution function H(X1, · · · , Xd).
The idea of separating H into two parts, one describing the depen-
dence structure and the other one describing the marginal behavior
only, leads to the well known concept of copulas, Joe (1997) and
Nelsen (1999). When we adjust copulas on financial data sets, gen-
erally we assume strict stationarity all along the considered period,
and we use different criteria such as AIC criterion, Akaike (1974),
D2 diagnostic, Caillault and Guégan (2005), to determine the best
one.

Furthermore, most of data sets cover a reasonably long time period
and economic factors may induce some changes in the dependence
structure: we can observe tranquil periods and turmoil periods for
instance, and then the notion of strict stationarity fails, Guégan
(2007). To take into account this phenomenon, the notion of dy-
namic copula has also been introduced in risk management by Dias
and Embrechts (2004), Jondeau and Rockinger (2006), and Granger
et al. (2006). The dynamics are introduced inside the copula’s pa-
rameters using some time-varying function of predetermined vari-
ables. In all these cases the family of the copula remains changeless.
Recently, Caillault and Guégan (2007) proposed a new method to
take into account the possibility of changes of the copula’s family
and changes inside the parameters, using moving windows. On a se-
quence of subsamples, a series of copulas (adjusted with respect to
the AIC criterion) are selected. Practically the changes of the copu-
las appear evident. However, some problems remain opened such as
the choice of the width of the moving window or the detection of the
change points. These choices influence the accuracy of the results for
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the copula’s adjustment.

In this paper, we develop a new approach to use the dynamic copula.
We proceed in two steps. We test if the copula changes. If not we
adjust some dynamics on the parameters of the copula. If the copula
changes, we adjust a set of copulas to model the dynamics of the data
sets. In order to detect the change type of the copula robustly, we
propose a series of nested tests based on conditional copulas, Ander-
son (1969), Fermanian (2005). Our procedure is as follows. At first,
we test whether the copula changes during a considered time period.
If the copula seems changeless, we keep the copula and we deal with
the changes of copula’s parameters. If we detect some changes in the
copulas, then we apply the so called binary segmentation procedure
to detect the change time and to build a sequence of copulas. If only
the copula parameters change, we apply the change-point analysis
as in Csörgő and Horváth (1997), Gombay and Horváth (1999) and
Dias and Embrechts (2004). In this latter case considering that the
change-point tests have less power in the case of “small” changes,
we assume that the parameters change according to the time-varying
functions of some predetermined variables. We summarize our pro-
cedure in Figure 1.

In order to illustrate this new approach, we apply it to Standard &
Poor 500 and Nasdaq indices. We study their dynamic dependence
and use it for risk management, computing risk measures such as
the VaR (Value at Risk) and the ES (Expected Shortfall) measures.

The paper is organized as follows. In Section 2, we review some
useful notions and specify the notations. Section 3 presents a series
of tests for detecting the copulas’ change. Section 4 analyzes the
details for every change type, including the change time, the copulas
and the change value of the parameter, etc. In section 5, we provide
some empirical research applying the previous method on two real
data sets and we associate their dynamic risk measures. Section 6
concludes.
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Fig. 1. Change analysis of copula

2 Preliminaries and notations

In order to detect the change of dependence structure, we use con-
ditional copulas. Here we simply recall the definitions and introduce
some notations. We specify also some assumptions useful in the fol-
lowing when we apply the Goodness-of-Fit tests.

2.1 Conditional copulas

Following Patton (2006), the conditional copulas are defined as the
following.

Definition 1. A d-dimensional conditional copula is a function C:
[0, 1]d → [0, 1] such that for some conditioning set F :

1. For every u = (u1, u2, . . . , ud) ∈ [0, 1]d, C(u|F) = 0 when at
least one coordinate of u is zero, and if all coordinates of u are
1 except uk, then C(u|F) = uk, k = 1, · · · , d.
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2. C is d-increasing conditioned on F ,

The Sklar’s theorem (Sklar, 1959) can be extended for conditional
distributions and conditional copulas.

Theorem 1. Let H be a d-dimensional conditional distribution func-
tion with continuous margins F1, F2, · · · , Fd, and let F be some con-
ditioning set, then there exists a unique conditional d-copula C: [0, 1]d

→ [0, 1] such that for all x = (x1, x2, · · · , xd) in Rd
,

H(x|F) = C(F1(x1|F), F2(x2|F), · · · , Fd(xd|F)). (1)

Conversely, if C is a conditional d-copula and F1, F2, · · · , Fd are
univariate conditional distribution functions, then the function H
defined by Equation (1) is a d-dimensional conditional distribution
function with margins F1, F2, · · · , Fd.

2.2 Assumptions and Goodness-of-Fit (GOF) tests

Now we specify some useful assumptions for the GOF tests that
we use later. For a d-dimensional stationary process with n obser-
vations (Xn)n∈Z = {(Xi1, Xi2, . . . , Xin) : i = 1, 2, . . . , d}, let H be
its cumulative distribution function. Usually, a GOF test permits to
distinguish between two hypotheses. We denote H0 a known cumula-
tive distribution function, and H = {Hθ|θ ∈ Θ} a known parametric
family of cumulative distribution functions, then the GOF test is:

1. H0 : H = H0, against Ha : H 6= H0, when the null hypothesis is
simple; or

2. H0 : H ∈ H, against Ha : H /∈ H when the null hypothesis is
composite.

We specify now some assumptions:

Assumption 1. Let be K, a probability kernel function on Rd, twice
continuously differentiable, which is the product of d univariate ker-
nels Ki (i = 1, 2, . . . , d) with compact supports.

Assumption 2. Let be hn = (h1n, h2n, . . . , hdn) a bandwidth vector,
where hn = h1n = h2n = . . . = hdn such that hn → 0, nhd

n → ∞,
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nh4+d
n → 0 and nh

3+d/2
n /(ln(ln n))3/2 →∞ as n →∞.

Assumption 3. Let be (Xn)n∈Z, we denote ϕn−1 = σ((X1,s, X2,s, . . . , Xd,s) :
s ≤ n − 1) the conditional information set available at n − 1 and
ϕi,n−1 = σ(Xi,s : s ≤ n− 1) the conditional information set, for the
i-th variable, available at n− 1.

Assumption 4. Let be C0 the true copula associated to (Xn)n∈Z.
For ∀u ∈ [0, 1]d, we denote c0 = c0(u, θ) its copula density function,
and θ the parameter vector. In addition, the first two derivatives
of c0 with respect to u are assumed to be uniformly continuous on
Υ (uj) × Υ (θ0), where Υ (uj) represents an open neighborhood of the
points (uj)j=1,2,...,m ∈ [0, 1]d, (m ∈ Z), Υ (θ0) denotes an open neigh-
borhood of θ0.

3 Tests for copula’s change

In this section we use the conditional copulas to perform a series of
specified GOF tests.

3.1 Test to detect the change of copula

Using the previous notations and the notion of the conditional cop-
ula, we test the null hypothesis,

H(1)
0 : For every n ∈ N, C(·|ϕn−1) = C0(·),

against
H(1)

a : For some n ∈ N, C(·|ϕn−1) 6= C0(·),
where C0 has been introduced before.

In order to apply this test, first we need to build an estimate of
the conditional density c0(uj|ϕn−1) at point uj. We assume that we
observe an n-sample, then its estimate is given by:

ĉ(uj|ϕn−1) =
1

nhd
n

n∑
i=1

K(
uj −Ui

hn

), (2)
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where hn and hn are claimed in Assumption 2 and the kernel function
K is claimed in Assumption 1. The vector Ui is such that

Ui = (F̂1(X1,i), F̂2(X2,i), . . . , F̂d(Xd,i)),

i = 1, 2 . . . , n, where F̂l is the empirical l-th marginal cumulative
distribution function of (Xn)n∈Z, for l = 1, 2, . . . , d, and

F̂l(Xl,i) =
1

n + 1

n∑
p=1

1{Xlp<Xli}.

Now we introduce the test statistics:

T = (nhd
n)

m∑
j=1

{ĉ(uj|ϕn−1)− c0(uj|ϕn−1)}2

σ2(uj)
, (3)

where σ(uj) satisfies:

σ2(uj) = c2
0(uj|ϕn−1) ·

∫
K2.

Under the null hypothesis H(1)
0 , the statistics T defined in Equation

(3) tends to a Chi-square distribution with m degrees of freedom
when n →∞, Fermanian (2005). Through this test based on T , we
can detect whether or not the copula changes during a considered
time period.

Note that the points (uj)j=1,2,...,m ∈ [0, 1]d are chosen arbitrarily.
Clearly, the power of the test T depends on the choice of the points
(uj)j=1,2,...,m, which is a drawback as the choice of cells in the usual
GOF Chi-square test. Without a priori, given an integer N , it is al-
ways possible to choose a uniform grid of the type (i1/N, i2/N, . . . , ik/N),
for every integers 1 ≤ i1, i2, . . . , ik ≤ N − 1.

3.2 Test to detect the change type of the copula

If we reject H(1)
0 , then we should study the dependence structure

inside the d-dimensional vector, in a dynamic way. Thus we test the
change type of the copula. Let be C = {Cθ, θ ∈ Θ} a family of cop-
ulas and θn−1 the parameter depending on the past information set
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of the process.

Let be the null hypothesis,

H(2)
0 : For every n ∈ N, θn−1 = θ(ϕn−1), C(·|ϕn−1) = Cθn−1 ∈ C,

and the alternative,

H(2)
a : For some n ∈ N, C(·|ϕn−1) /∈ C.

We use the same notations as before and we introduce the statistics
associated to this test:

R = (nhd
n)

m∑
j=1

{ĉ(uj|ϕn−1)− cθ̂n−1
(uj|ϕn−1)}2

σ̂2(uj)
, (4)

where uj (j = 1, 2, . . . , m) is described in Assumption 4, the σ-

algebra ϕn−1 is introduced in Assumption 3, and θ̂n−1 is the con-
sistent estimator of θn−1. cθ̂n−1

(uj|ϕn−1) denotes the density of the
conditional copula Cθ̂n−1

, and ĉ(uj|ϕn−1) is the empirical copula den-
sity given in Equation (2). Moreover,

σ̂2(uj) = c2
θ̂n−1

(uj|ϕn−1) ·
∫

K2.

Under the null hypothesis H(2)
0 , the statistics R defined in Equation

(4) tends to a Chi-square distribution with m degrees of freedom,

when n → ∞. If we reject H(2)
0 , the copula family changes. On the

other hand, if we do not rejectH(2)
0 , the copula family remains static,

then we say that only the copula’s parameters change. After deter-
mining the change type of the copula by testing H(2)

0 , we analyze in
details the copula’s changes.

Note that if we consider the Archimedean copula family C = {Cθ, θ ∈
Θ}, the parameter θ can be estimated using the Kendall’s tau.

4 Detail analysis for the copula change

According to the test results for the hypotheses H(1)
0 and H(2)

0 , we
determine the change type of the copula during the time period.
Here, we analyze two kinds of changes.
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4.1 Detail analysis for the change of copula’s family

If we reject H(2)
0 , then the copula’s family may change. We apply the

so called binary segmentation procedure to detect the change point.
This procedure proposed by Vostrikova (1981) enables to simultane-
ously detect the number and the location of the change-points. The
procedure can be described as follows. Firstly, we choose the best
copula according to the AIC criterion on the whole sample. Then
the sample is divided into two subsamples, we choose the best cop-
ulas on these two subsamples respectively. If the two best copulas
are different from the copula on the whole period, we continue this
segmentation procedure, i.e., we again divide each subsample into
two parts, and do the same work as in the previous step. Finally, the
procedure stops when all the best copulas on the subsamples have
been adjusted. Therefore, we get all the change points for the family
changes.

4.2 Detail analysis for the change of copula’s parameters

IfH(2)
0 is not rejected, the copula’s family remains changeless. There-

fore, we say that only the copula parameters change. Then, we need
to deal with the change analysis for the parameters.

To find the change time, we apply the change point technique intro-
duced by Dias and Embrechts (2004). Let u1, · · · ,un be a sequence of
independent random vectors in [0, 1]d with univariate uniformly dis-
tributed margins and copulas C(u; θ1, η1), · · · , C(u; θn, ηn), respec-
tively, where θi and ηi represent the dynamic and the static copula
parameters satisfying θi ∈ Θ(1) ⊆ Rp and ηi ∈ Θ(2) ⊆ Rq. We test
the null hypothesis

H(3)
0 : θ1 = θ2 = . . . = θn and η1 = η2 = . . . = ηn

against

H(3)
a : θ1 = . . . = θk∗ 6= θk∗+1 = . . . = θn and η1 = η2 = . . . = ηn.

Here k∗ is the location or time of the change-point if we reject the
null hypothesis. The hypotheses are tested through the generalized
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likelihood ratio, that is, the null hypothesis would be rejected for
small values of the likelihood ratio:

Λk =
sup(θ,η)∈Θ(1)×Θ(2)

∏
1≤i≤n c(ui; θ, η)

sup(θ,θ′ ,η)∈Θ(1)×Θ(1)×Θ(2)

∏
1≤i≤k c(ui; θ, η)

∏
k<i≤n c(ui; θ

′ , η)
,

where c is the density of C. The statistic Λk is carried out through
maximum likelihood method, all the necessary conditions of regular-
ity and efficiency have to be assumed, Lehmann and Casella (1998).

If Lk(θ, η) =
∑

1≤i≤k log c(ui; θ, η), and L∗k(θ, η) =
∑

k<i≤n log c(ui; θ, η),
then, the likelihood ratio equation can be written as

−2 log(Λk) = 2(Lk(θ̂k, η̂k) + L∗k(θ
∗
k, η̂k)− Ln(θ̂n, η̂n)).

The hypothesis H(3)
0 is rejected for large values of

Zn = max
1≤k<n

(−2 log(Λk)).

Pursuing Gombay and Horváth (1996), the following approximation
holds:

P(Z1/2
n ≥ x) ≈ xp exp(−x2/2)

2p/2Γ (p/2)
· (HL− p

x2
HL +

4

x2
+ O(

1

x4
)),

as x →∞, where HL = log
(1− gn)(1− ln)

gnln
, gn = ln = (log n)3/2/n,

Dias and Embrechts (2004).

If we assume that there is exactly one change point, then the esti-
mate for the change time is given by k̂n = min{1 ≤ k < n : Zn =
−2 log(Λk)}.

Considering that the change-point test has less power for small changes,
we analyze the dependence more specifically by assuming a time-
varying behavior for the corresponding parameter. In order to show
how it works, we provide now the dynamics of the parameters for
the copulas that we use in the applications. The definitions of the
copulas are recalled in an Annex.
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Using the dynamic Gaussian copula, we define the dynamic correla-
tion as :

ρt = h−1(r0 + r1x1,t−1x2,t−1 + s1h(ρt−1)), (5)

where (x1,t)t and (x2,t)t are the samples, r0, r1, s1 the parameters and
h(·) the Fisher’s transformation such that h(ρ) = log(1+ρ

1−ρ
), to ensure

that −1 < ρ < 1.

If we work with the dynamic Student t-copula, the dynamic degrees
of freedom ν can be defined as:

νt = l−1(r0 + r1x1,t−1x2,t−1 + s1l(νt−1)), (6)

where r0, r1, s1 are parameters and l(·) is a function defined as:
l(ν) = log( 1

ν−2
).

For the dynamic Gumbel copula, the dynamic parameter δ can be
described as:

δt = w−1(r0 + r1x1,t−1x2,t−1 + s1w(δt−1)), (7)

where r0, r1, s1 are parameters and w(·) is a function defined as:
w(δ) = log( 1

ν−1
).

5 Empirical work

We apply now the above change analysis of dynamic copula to Stan-
dard & Poor 500 (S&P500) and Nasdaq indices. The sample data
sets contain 2436 daily observations from 4 January, 1993 to 30 Au-
gust, 2002 for both assets. The log-returns of these two indices are
shown in Figure 2.

From Figure 2, it is observed that the outliers of the two underlying
log-returns typically occur simultaneously, and almost in the same
direction. We observe that both assets fluctuate a lot from the mid-
dle of 1997 when the Asian financial crisis burst out.
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Fig. 2. Log-returns for S&P500 (up) and Nasdaq (down) Indices

Let ri,t (i = 1, 2) be the daily log-returns for S&P500 and Nasdaq
respectively. In order to filter the observed instability, we fit a uni-
variate GARCH(1,1) model to each log-return series, that is:

ri,t = µi + ξi,t with ξi,t = σi,tεi,t,
σ2

i,t = αi,0 + αi,1ε
2
i,t−1 + βi,1σ

2
i,t−1,

εi,t|ϕi,t−1 ∼ N(0, 1),
(8)

where µi is the drift, αi,0, αi,1, βi,1 are parameters in R. The estima-
tion of the parameters using likelihood method are given in Table 1.

Table 1. Estimates of GARCH(1,1) parameters

Parameter S&P500 Nasdaq

µ 6.013e-04 (1.633e-04) 9.395e-04 (2.116e-04)
α0 6.018e-07 (1.579e-07) 1.486e-06 (2.877e-07)
α1 7.947e-02 (6.670e-03) 1.157e-01 (8.902e-03)
β1 9.201e-01 (6.761e-03) 8.849e-01 (8.596e-03)

Figures in brackets are standard errors
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5.1 Dynamic copula for S&P500 and Nasdaq indices

In order to investigate the dependence between these two data sets,
we firstly adjust the best copula for the standard residual-pairs
(ε1,t, ε2,t) over the whole period using AIC criterion. The set of cop-
ulas includes Gaussian, Student t, Gumbel, Clayton and Frank cop-
ulas. The copulas fitting is given in Table 2. Although Student t
copula has the smallest AIC value, the estimation is unfortunately
not convergent, therefore, Gaussian copula provides the best copula
for the whole sample.

Table 2. Copula fitting results

Copula Parameter AIC Convergence

Gaussian 8.116e-01 (2.684e-02) -2615.196 T

Student t
8.143e-01 (3.384e-02);
13.668 (5.078e-01)

-2642.88 F

Gumbel 2.461 (4.090e-02) -2505.374 T
Clayton 1.659 (5.280e-02) -1867.982 T
Frank 8.391 (1.878e-01) -2419.844 T

Figures in brackets are standard errors, for Student t copula, the first parameter is
correlation, the second one is degree of freedom, and “T” means “True”, “F” means
“Fault”.

In a first step, we test the stability of this copula. We use the test
developed in Section 3.1 and the statistics T in Equation (3). Here,
we assume that the true copula is the Gaussian one specified in Table
2. To apply the test, we choose a kernel function K given by

K(u) = (
15

16
)2

2∏
i=1

(1− u2
i )

21{ui∈[0,1]},

a bandwith ĥn =

√
(σ2

1 + σ2
2)/2

n1/6
, and σ2

l will be the empirical vari-

ance of F̂l (l = 1, 2). Furthermore, for the points (uj)j=1,2,...,m in
Assumption 4, we choose m = 81 points on the uniform grid with
the type of (1/10, 2/10, . . . , 9/10)× (1/10, 2/10, . . . , 9/10).
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Using this approach, the p-value for the null hypothesis H(1)
0 is equal

to 0. Thus the null hypothesis is rejected and the copula for the data
set does not remain static.

In a second step, we detect the changes of copula’s family using
the binary segmentation procedure described in Section 4.1. Trough
deciding the best copulas on the subsamples divided by the binary
segmentation, all of the change time for the copula’s family are de-
tected. The results are given in Table 3.

Table 3. Changes of copula’s family

Period Copula Parameter Change time

04/01/93-24/10/97 Gaussian 7.716e-01 (3.632e-02) -

24/10/97-11/01/99 Student t
8.497e-01 (3.636e-02);
8.355 (2.071)

24 Oct. 1997

11/01/99-18/08/99 Gumbel 3.06275 (2.027e-01) 11 Jan. 1999
18/08/99-06/12/99 Gaussian 8.429e-01 (1.595e-01) 18 Aug. 1999

06/12/99-24/03/00 Student t
6.317e-01 (1.462e-01);
14.564 (1.644)

6 Dec. 1999

24/03/00-09/08/00 Gumbel 2.81704 (2.384e-01) 24 Mar. 2000
09/08/00-22/12/00 Gaussian 8.630e-01 (1.481e-01) 9 Aug. 2000

22/12/00-20/02/01 Student t
9.115e-01 (2.844e-01);
1.693383 (9.324e-01)

22 Dec. 2000

20/02/01-08/06/01 Gaussian 8.673e-001 (1.709e-01) 20 Feb. 2001

08/06/01-30/08/02 Student t
8.948e-01 (1.200e-01);
24.506 (1.134)

8 Jun. 2001

“Period” shows the start and end time of the observations within the corresponding
subsamples, in the form of Day/Month/Year, where “Year” is represented by the last
two numbers of the year, i.e., “99” represents the year 1999 for instance. Figures in
brackets are standard errors, and for Student t copula, the first parameter is correlation,
the second one is degree of freedom.

The result in Table 3 provides the change period for copula’s family
that coincide with some financial incidents:

– 24 Oct. 1997: copula family changes from Gaussian to Student
t. This date corresponds to 27 October, 1997 when the Asian
financial crisis came to a head.



15

– 11 Jan. 1999: copula family changes from Student t to Gumbel.
This date corresponds to the introduction of Euro as the unit
European currency.

– 24 Mar. 2000: copula family changes from Student t to Gum-
bel. This date corresponds to the technology-heavy Nasdaq stock
market peaked on 10 Mar. 2000 and S&P 500 peaked on 24 Mar.
2000.

– 8 Jun. 2001: copula family changes from Gaussian to Student
t. This date corresponds to the subsequent 9.11 attacks and the
recession lasted from March 2001 to November 2001 in the United
States.

Thirdly, for each corresponding period within which the copula’s
family does not change, we detect the change points for the copula’s
parameters in the way introduced in Section 4.2. We provide the re-
sults in Table 4. z

1/2
n is the corresponding observation value for the

statistics Z
1/2
n .

Table 4. Change-point for copula’s parameters

Period Copula z
1/2
n P H(3)

0 Change time

04/01/93-24/10/97 Gaussian 3.134 7.250e-02 × 15 Oct. 1997
24/10/97-11/01/99 Student t 1.240 4.214e-01 X -
11/01/99-18/08/99 Gumbel 2.253 3.471e-01 X -
18/08/99-06/12/99 Gaussian 2.938 6.331e-02 × 1 Dec. 1999
06/12/99-24/03/00 Student t 1.255 6.648e-01 X -
24/03/00-09/08/00 Gumbel 2.761 1.054e-01 X -
09/08/00-22/12/00 Gaussian 2.298 2.829e-01 X -
22/12/00-20/02/01 Student t 2.547 1.272e-01 X -
20/02/01-08/06/01 Gaussian 3.398 1.702e-02 × 4 Jun. 2001
08/06/01-30/08/02 Student t 1.818 7.743e-01 X -

“Period” shows the start and end time of the observations within the corresponding
subsamples, in the form of Day/Month/Year, where “Year” is represented by the last
two numbers of the year, i.e., “99” represents the year 1999 for instance. P denotes
the probability P (Z

1/2
n > z

1/2
n ) in Section 4.2, the null hypothesis H(3)

0 is rejected at a
10% level, we simply denote “X” as “not reject” and “×” as “reject”.

The change points for the copula’s parameter shown in Table 4 reflect
some financial events, which can be described as:
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– 15 Oct. 1997: corresponds to the Asian financial crisis beginning
from July 1997;

– 1 Dec. 1999: corresponds to the preparation of the unit European
currency, euro;

– 4 Jun. 2001: corresponds to the recession beginning from March
2000 to November 2001, as the real gross domestic product in the
United States dropped by 0.2% total from the fourth quarter of
2000;

Finally, as the above change-point analysis only detects “large” changes
in the parameters, we further study the dynamic parameters using
the appropriate time-varying functions introduced in Equation (5),
(6) and (7). The results are given in Table 5.

5.2 Risk management strategy

Our systematic change analysis for the dynamic copula can be tractably
applied to measure the dynamics in the dependence structure of the
financial data. Now we compute the simulated VaR and ES mea-
sures in a dynamic way. For a given probability level α, 0 < α < 1,
VaRα is simply the maximum loss that is exceeded over a specified
period with a level of confidence 1−α. If X is a random return with
distribution function FX , then

FX(VaRα) = P{X ≤ VaRα} = α.

Thus, losses lower than VaRα occur with probability α. For the other
measure ES (Expected Shortfall), it represents the expectation of
loss knowing that a threshold is exceeded, for instance VaRα, and
we define it as:

ESα(X) = E{X|X ≤ VaRα}.
For the portfolio of S&P500 and Nasdaq with equal weight, we com-
pare the VaR and ES values using the static copula and the dynamic
copula. For the static copula, we choose the Gaussian copula given
in Table 2 corresponding to the whole period. We use the dynamic
copula obtained through time-varying parameters (given in table 5)
over different subsamples assuming that the copula’s family does not
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Table 5. Estimates for time-varying parameters

Period Copula Parameter r0 r1 s1

04/01/93-24/10/97 Gaussian dynamic ρ
2.620e-02

(4.961e-02)
4.160e-02

(5.347e-02)
9.735e-01

(2.689e-01)

24/10/97-11/01/99 Student t
ρ = 8.249e-01
(2.264e-02)

; - - -

dynamic ν
8.915e-01

(8.238e-01)
-1.632e-01
(1.389e-01)

3.313e-01
(1.226e-01)

11/01/99-18/08/99 Gumbel dynamic δ
-1.263

(2.194e-01)
-5.236e-03
(1.129e-01)

-7.700e-01
(3.890e-02)

18/08/99-06/12/99 Gaussian dynamic ρ
3.266

(1.495)
3.081e-02

(3.636e-03)
-3.557e-01
(3.291e-02)

06/12/99-24/03/00 Student t
ρ = 5.433e-01
(2.938e-02)

; - - -

dynamic ν
7.228e-01

(5.977e-01)
4.033e-01

(1.428e-01)
-6.784e-01
(2.584e-01)

24/03/00-09/08/00 Gumbel dynamic δ
-8.134e-01
(5.823e-01)

-3.892e-02
(3.937e-01)

-4.400e-01
(5.333e-02)

09/08/00-22/12/00 Gaussian dynamic ρ
3.317

(3.055e-02)
1.104e-01

(2.343e-03)
-3.147e-01
(7.314e-01)

22/12/00-20/02/01 Student t
ρ = 9.387e-01
(5.236e-01)

; - - -

dynamic ν
-1.922
(1.485)

1.276
(1.893)

-5.806e-01
(5.530e-01)

20/02/01-08/06/01 Gaussian dynamic ρ
4.236e-02

(6.874e-01)
3.808e-02

(5.258e-02)
9.792e-01

(2.180e-01)

08/06/01-30/08/02 Student t
ρ = 8.747e-01
(2.711e-02)

; - - -

dynamic ν
-5.764e-01
(5.540e-01)

-3.595e-01
(8.683e-01)

-1.025
(3.303e-01)

“Period” shows the start and end time of the observations within the corresponding
subsamples, in the form of Day/Month/Year, where “Year” is represented by the last
two numbers of the year, i.e., “99” represents the year 1999 for instance. Figures in
brackets are standard errors.
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change in each subsample (the families of copulas are provided in Ta-
ble 3). We calculate the VaR and ES values per 20 days in order to
clearly observe the dynamics. The results obtained from the static
and dynamic copulas are shown in Figure 3 and Figure 4.
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Fig. 3. VaR and ES using static copula for the portfolio of S&P500
and Nasdaq Indices

From Figure 3 and Figure 4, it can be observed that the VaR and
ES values fluctuate a lot. Through comparison, some conclusions are
summarized below:

1. The dynamics of the VaR and ES using the static copula only
come from the volatilities of the GARCH model, while using the
dynamic copulas, the dynamics of VaR and ES still depend on
the dynamic dependence structure;
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Fig. 4. VaR and ES using dynamic copulas for the portfolio of
S&P500 and Nasdaq Indices

2. The VaR and ES from the static copula have generally smaller ab-
solute values than those from the dynamic copulas, which means
that the dynamic copula model shows more risk information than
the static one. It is very important for portfolio investors who al-
ways choose the portfolio with the smallest VaR and ES absolute
values. In practice, we observed that it is not appropriate to com-
pute the VaR and ES values using the static copula.

3. After the middle of 1997 when the Asian financial crisis broke out,
the VaR and ES values calculated from the dynamic copula vary
a lot, while this phenomenon does not distinctly appear when we
use the static copula. This means that the dynamic copula model
proves better than the static one in terms of the sensitivity to the
risk .
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From the above remarks, it appears that the dynamic changes in-
side the dependence structure of a portfolio plays an important role
in risk management. Recently we have also observed this fact in
multivariate option pricing, using dynamic dependence measured by
copulas, Guégan and Zhang (2007).

6 Conclusion

In this paper, we introduce a new approach to detect the best dy-
namic copula which characterizes the evolution of several data sets.
It is based on a series of nested tests concerning the conditional
copula and the GOF test. This approach permits to determine the
change type of the copula using the binary segmentation procedure,
the change-point analysis and the time-varying parameter functions.
We illustrate our approach with S&P500 and Nasdaq indices. The
empirical result presented the changes of copula’s family as well as
the changes of parameters. Furthermore, our approach has been ap-
plied to give the dynamic risk measures VaR and ES, which plays
an important role in risk management.

7 Annex

7.1 Gaussian copula

The copula of the d-variate normal distribution with linear correla-
tion matrix R is

CGa
R (u) = Φd

R(Φ−1(u1), Φ
−1(u2), · · · , Φ−1(ud)),

where Φd
R denotes the joint distribution function of the d-variate

standard normal distribution function with linear correlation ma-
trix R, and Φ−1 denotes the inverse of the distribution function of
the univariate standard Gaussian distribution. Copulas of the above
form are called Gaussian copulas. In the bivariate case, we denote ρ
as the linear correlation coefficient, then the copula’s expression can
be written as

CGa(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1− ρ2)1/2
exp{−s2 − 2ρst + t2

2(1− ρ2)
}dsdt.
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The Gaussian copula CGa with ρ < 1 has neither upper tail depen-
dence nor lower tail dependence.

7.2 Student-t copula

If X has the stochastic representation

X
d
= µ +

√
ν√
S

Z, (9)

where
d
= represents the equality in distribution or stochastic equality,

µ ∈ Rd, S ∼ χ2
ν and Z ∼ Nd(0, Σ) are independent, then X has a d-

variate tν distribution with mean µ (for ν > 1) and covariance matrix
ν

ν−2
Σ (for ν > 2). If ν ≤ 2 then Cov(X) is not defined. In this case

we just interpret Σ as the shape parameter of the distribution of X.
The copula of X given by Equation (9) can be written as

Ct
ν,R(u) = tdν,R(t−1

ν (u1), t
−1
ν (u2), · · · , t−1

ν (ud)),

where Rij = Σij/
√

ΣiiΣjj for i, j ∈ {1, 2, · · · , d}, tdν,R denotes the

distribution function of
√

νY/
√

S, S ∼ χ2
ν and Y ∼ Nd(0, R) are

independent. Here tν denotes the margins of tdν,R, i.e., the distribution

function of
√

νYi/
√

S for i = 1, 2, · · · , d. In the bivariate case with
the linear correlation coefficient ρ, the copula’s expression can be
written as

Ct
ν,R(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π(1− ρ2)1/2
{1+

s2 − 2ρst + t2

ν(1− ρ2)
}−(ν+2)/2dsdt.

Note that ν > 2. And the upper tail dependence and the lower tail
dependence for Student t copula have the equal value.

7.3 Gumbel copula

The Gumbel copula is defined as

CGu(u, v; δ) = exp{−[(− ln u)δ + (− ln v)δ]1/δ}, δ ∈ [1,∞).

It has the properties:



22

1. δ = 1 implies CGu(u, v; 1) = uv;
2. As δ →∞, CGu(u, v; δ) → min(u, v);
3. Gumbel copula has upper tail dependence: 2− 21/δ;
4. Gumbel copula has no lower tail dependence.

The Gumbel copula belongs to the Archimedean copula, Joe (1997)
and Nelsen (1999).
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